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Abstract

Banks are vital suppliers of money-like safe assets, which they produce by issuing
short-term liabilities and pledging collateral. But their ability to create safe assets
varies over time as leverage constraints fluctuate. I present a model to describe
private safe-asset production when intermediaries face leverage constraints. I
measure bank leverage constraints using bank-intermediated basis trades. The
collateral premium—a strategy long Treasuries used more often as repo collateral
and short Treasuries used less often—has a positive expected return of 22 basis
points per year because the collateral premium compensates for bank leverage
risk.
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1 Introduction

Banks produce money-like safe assets using leverage and collateral. But banks’ ability to
do so changes because they may become more or less leverage constrained over time. While
the aggregate safe-asset supply fluctuates with the quantity of sovereign debt outstanding, it
also fluctuates as banks face time-varying leverage constraints. I develop a simple model to
describe money-like safe-asset production when banks are leverage constrained and present
the pricing implications of time-varying leverage constraints for safe assets that are used as
collateral.

I look within U.S. Treasury collateral backing a type of short-term safe asset—repurchase
agreements (repos)—and document a collateral premium. Treasuries used as collateral have
higher average returns than Treasuries not used as collateral, even after controlling for
observables. I show that banks prefer to use the least money-like Treasuries as collateral,
consistent with Greenwood et al. (2015)’s finding that long-term Treasuries are less money-like
because of their high interest rate risk. With costly short-term equity issuance, Treasuries’
collateral value depends on bank leverage constraints, leading to an implicit inefficiency:
Banks use longer-term safe assets as collateral, but using these safe assets as collateral makes
them riskier because their collateral value becomes linked to bank leverage constraints.

Collateral dynamics matter because collateral is a basic input for the private sector’s
safe-asset production function. It is important to understand how the financial system
produces safe assets because it is painful when safe-asset production breaks down, as it did
during the Global Financial Crisis and the early stages of the 2020 pandemic.

A safe asset is a low-risk asset because it has low consumption covariance and is therefore
information-insensitive. There are two types of safe assets: short-term safe assets that are
money-like, liquid transaction media, and long-term safe assets that store value because they
have minimal credit risk. Safe assets require either a government guarantee, like a Treasury
bond, or collateral, like a repo backed by a security. By design, investors have little incentive
to produce private information on a safe asset, and agents can use them as payment or as a
store of value without fear of adverse selection. Safe assets earn the convenience yield, the
non-pecuniary return on assets that provide safety or liquidity.

Leverage and private safe-asset production are two sides of the same coin when equity
issuance is costly. The costs of raising new external equity in the short term prevent banks
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from offsetting capital shocks with new equity issuance (Kashyap et al., 2010). Banks cannot
produce safe assets without incremental leverage or costly balance sheet adjustments because
they do not issue equity regularly. Variation in the banking system’s leverage constraint
leads to variation in the banking system’s ability to produce private safe assets—a source of
risk for collateral. Banks may be leverage constrained because of regulatory limits or market
discipline, when private lenders avoid providing additional funding to risky banks.

I build a simple two-period model in the spirit of Krishnamurthy and Vissing-Jørgensen
(2015) to describe expected returns in an economy where a bank produces short-term,
money-like safe assets using its assets as collateral. The model predicts that the collateral
premium—the difference in expected returns for Treasuries used as collateral and those that
are not—is positive because it compensates investors for bank leverage risk. The expected
return on Treasuries used as collateral compensates the holder for the risk that bank leverage
constraints might increase, reducing its value as collateral. All Treasuries hedge contractions
in the safe-asset supply, but Treasuries used as collateral are worse hedges than Treasuries
not used as collateral.

I use CUSIP-specific collateral data collected from money market mutual fund investments
in the tri-party repo market to explore the model’s asset pricing implications. The data
are monthly and run from 2011 to 2018, providing more than one million CUSIP-month
observations. I observe both sides of the repo—the money market mutual fund lender and
the borrowing financial institution—which provides variation in both the time series and
cross section. The data allow me to identify which Treasury CUSIPs banks used as collateral.
For each Treasury CUSIP, I calculate their collateral ratio (CR), the share of a CUSIP’s total
market value used as repo collateral. In my sample, banks use 2.4 percent of each Treasury
CUSIP, on average, as collateral provided to money funds.

I document that Treasuries commonly used as collateral have higher expected returns
than Treasuries not used as collateral, even after controlling for observables. After I sort
Treasury CUSIPs into terciles based on their collateral ratio, the collateral premium is a
strategy long Treasuries in the top tercile and short Treasuries in the bottom tercile. The
collateral premium has an annualized average return of 22 basis points after controlling for
liquidity.

Banks deliberately choose which CUSIPs to use as collateral, and they spend considerable
time and resources forecasting which Treasury CUSIPs have the lowest opportunity cost to
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pledge as collateral. They want to keep the highest-quality Treasuries for themselves or to
use in more profitable ways. I confirm this intuition and show that banks use less liquid and
longer-dated bonds as collateral more often.

The model shows that expected returns for different types of safe assets depend on their
covariance with bank leverage constraints. I measure bank leverage constraints by aggregating
across dozens of bank-intermediated basis trades. When banks are not leverage constrained,
they can lever up and push the bank-intermediated arbitrage returns toward zero. Arbitrage
returns are high in absolute value when banks cannot lever up and arbitrage the basis toward
zero.

I argue that the collateral premium is positive and economically large because it compen-
sates for bank leverage risk. Treasuries are useful as collateral if intermediaries can pledge
them, which mechanically requires the bank to take on incremental leverage. I show that the
collateral premium is positive because it compensates for bank leverage risk in several ways.

First, I show that the collateral premium covaries with innovations to bank leverage
constraints. Second, I show that low-CR Treasuries’ yields fall by more than high-CR
Treasuries’ yields when banks become more leverage constrained. Third, bonds used as
collateral must have worse returns when leverage constraints increase if the collateral premium
is compensation for bank leverage risk; otherwise, there is no risk that requires compensation.
I show that Treasuries used as collateral by leverage-constrained banks had lower returns
than Treasuries held by other banks in the earliest stages of the European sovereign debt
crisis. Fourth, I perform an event study and show that Treasuries have negative abnormal
returns after dealers begin using that CUSIP more intensively as collateral. I reject the
hypothesis that the Treasuries have lower realized returns because of other risk-compensated
characteristics. Fifth, I show that an individual bank’s performance in the Federal Reserve’s
stress tests is tightly linked to the abnormal returns of the Treasury CUSIPs that the bank
uses as collateral.

Relation to the Literature This paper contributes to the literature by documenting
Treasuries’ collateral premium, its relationship with bank leverage, and providing details
about the collateral allocation process in tri-party repo. Hu et al. (2019) use similar repo
data and focus on repo prices. They show that repo markets are competitive for safe assets
but segmented for repos with risky collateral and that dealers optimize borrowing costs
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by strategically distributing collateral across fund families. Krishnamurthy (2002) studies
the on-the-run, off-the-run spread in Treasury bonds and documents the effect of investors’
liquidity demands on the spread. Infante (2020) shows that increased demand for safe assets
leads to a decrease in repos backed by Treasuries outstanding as the demand for safe assets
compresses Treasuries’ risk premia. Jank and Moench (2019) find that German banks respond
to a falling safe-asset supply by increasing existing collateral re-use. Infante et al. (2018)
show that the collateral multiplier for Treasury securities varies daily. Singh (2017) highlights
the relationship between dealer balance sheet capacity and the financial system’s ability to
intermediate collateral. Christensen and Mirkov (2021) find safe but illiquid government
bonds earn a large convenience yield, likely reflecting their ability to store value and serve as
collateral. He et al. (2021) study the Treasury market’s dysfunction during the COVID-19
crisis and show that the safe-haven status of longer-term Treasuries may be eroding as
intermediaries face binding leverage constraints.

This paper also contributes to the literature on the safe-asset supply. Diamond (2020)
presents a model in which intermediaries choose the least risky portfolio, a diversified portfolio
of nonfinancial firms’ debt, to back their short-term debt issuance and shows that increased
safe-asset demand increases intermediaries’ leverage. Krishnamurthy and Vissing-Jørgensen
(2015) show that demand for safe assets is an essential determinant of banks’ short-term debt
issuance, finding that Treasury issuance crowds out lending financed by short-term bank
debt. Krishnamurthy et al. (2016) show that Treasuries are safe because the large number of
Treasuries outstanding leaves investors with “nowhere else to go.” Krishnamurthy et al. (2019)
present a safe-asset determination model, finding that the sovereign’s fundamentals and its
outstanding debt are key determinants. Gorton et al. (2012) find that the safe-asset share
of financial assets in the U.S. has been constant over the past 60 years, but its composition
has changed from traditional bank liabilities to shadow bank liabilities. Krishnamurthy
and Vissing-Jørgensen (2012) show that a scarcity of Treasuries relative to GDP pushes
spreads between Treasuries and highly-rated corporate bonds higher as investors place a
larger premium on the safety and liquidity aspects of U.S. sovereign debt. Gorton et al.
(2015) show that more repos fail when the convenience yield is high. Gorton and Laarits
(2018) find a safe-asset shortage post-crisis compared to pre-crisis. Sunderam (2015) shows
that the financial sector produces more safe assets in the form of asset-backed commercial
paper when the convenience yield is high.
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2 Institutional Details

I focus on repos, a type of safe asset produced by banks. A repo is a secured financing
transaction in which the borrower (e.g., a bank or dealer) sells a security to a lender (e.g., a
money market mutual fund) and agrees to repurchase it later, often the next day. The repo
market is a large and central component of the financial system. In the U.S., primary dealers
had $4 trillion of repo outstanding in 2018. Duffie (1996) describes repo mechanics in detail.

Intermediaries provide deposit account equivalents to institutional cash pools with repo.
Repos-as-deposit-accounts blossomed in popularity because institutions’ large cash balances
far exceed deposit insurance limits. Gorton et al. (2012) and Pozsar (2011) attribute the
pre-crisis surge in repo to growth in institutional cash pools—pensions, endowments, and
corporations—paired with a shrinking supply of Treasuries relative to GDP.

Table 1 uses a simplified bank balance sheet to show how a bank creates a safe asset by
levering up and trading repo. In the pre-repo panel, the bank has $100 in Treasuries funded
with $100 in equity. In the post-repo panel, the bank pledges its Treasuries as collateral in a
repo to borrow $100 cash. The bank’s leverage, equal to assets divided by equity, doubles
after the repo. Holding equity levels constant, the bank must increase its leverage if it issues
any liabilities like repo. Kashyap et al. (2010) show that the costs of raising new external
equity are important in the short term and prevent banks from offsetting capital shocks
with new equity issuance. In this context, a bank cannot produce safe assets—always short
term liabilities—without incremental leverage. Variation in the banking system’s leverage
constraint mechanically leads to variation in the banking system’s ability to produce private
safe assets.

The Repo Market The U.S. repo market is bifurcated into the tri-party and bilateral
markets. In tri-party repo, a custodian sits between the lender and borrower to reduce
operational burdens for smaller participants. According to the Federal Reserve Bank of New
York, tri-party repo volume was $2.1 trillion in May 2020; tri-party repo collateral was 58
percent Treasuries, 40 percent agency MBS, and 2 percent agency debt. In the bilateral
market, Counterparties interact directly. Few data exist for the bilateral market despite
its apparent size. Baklanova et al. (2016) and Copeland et al. (2014) estimate that the
bilateral market was $1.9 trillion in March 2015 and find that 60 percent of the collateral
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was Treasuries, 20 percent was equities, and the rest was ABS or corporate debt. Baklanova
et al. (2015) give additional details on repo markets.

Tri-party trades are cash-driven because they are motivated by a cash lender’s desire for
a safe store of value. The bilateral market is security-driven because investors want a specific
security. For example, investors might use a bilateral repo to acquire a Treasury trading
special. Specific collateral CUSIPs might trade special because they are in high demand in
the cash market: Most often, investors want that specific Treasury because the bond is on
the run or is the cheapest to deliver into a Treasury future.

Cash lenders in the tri-party market include money market funds, corporate treasuries,
municipalities, and insurance companies. Cash borrowers include hedge funds and other
levered investors, like mortgage real-estate investment trusts. The bank intermediates between
cash lenders and cash borrowers to provide leverage to the bank’s levered prime-brokerage
clients. In return, cash lenders receive a set of high-quality collateral securities, but not a
specific security. Because my data come from money market fund filings, I have data on only
tri-party repo collateral.

Repo collateral is either general or specific. General collateral encompasses a broad
set of interchangeable high-quality securities, like U.S. Treasuries, agency mortgage-backed
securities, or agency debt (e.g., Federal Home Loan Bank debt) but can also include more
exotic securities and equities. In the typical cash-driven tri-party repo transaction, the cash
lender limits acceptable collateral regarding maturity, issue concentration, liquidity, and other
factors.

Collateral Optimization Financial market participants spend considerable time and
resources to select which CUSIPs to use as collateral and decide how to allocate collateral
efficiently across counterparties. Their goal is to have the lowest financing cost and the
most unencumbered high-quality liquid assets. Repo borrowers leave their collateral inside
their custodial account at the tri-party clearing bank—called the box—to facilitate same-day
settlement. The custodian simply moves the collateral from the borrower’s box to the lender’s
box, as the custodian holds both box accounts on its balance sheet.

Dealers prefer to place collateral with the lowest outside option in the box. Banks can
often finance a Treasury trading special at lower rates outside the box in security-specific
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bilateral repos.1 The custodian gives dealers tools to allocate collateral across secured trades
efficiently, but many dealers use in-house methods. The Bank of New York Mellon (BNYM),
the tri-party repo custodian in the U.S., provides a default collateral matching algorithm
that is uncontroversial and endogenously designed to meet clients’ (i.e., banks and dealers)
demands.

Dealers carefully choose what collateral to put in the box because they cannot easily
access it later. There is nontrivial friction in moving collateral in and out of the box. After
post-crisis tri-party repo reforms, overnight collateral is locked up until 3:30 p.m. If collateral
becomes desirable in dealer markets, the dealer must manually substitute unencumbered
collateral from its box to the tri-party lock-up to ensure it has sufficiently collateralized all
its repo deals at all times. The dealer must hold extra collateral in its box if it needs to
substitute collateral already locked-up because custodians no longer provide intraday credit
to finance collateral substitutions. Treasuries are often substituted, because hedge funds
and dealers often trade in ways that require substitutions. The frictions involved in moving
collateral in and out of the box mean dealers spend considerable resources ranking collateral
and making deliberate collateral decisions.

Dealers can use BNYM’s collateral optimization tools to optimize across several dimensions.
The matching requires three inputs: a list of all the dealer’s collateral, a list of all the repo
deals and what collateral is eligible for each deal, and the dealer’s collateral preference
ranking. BNYM, for example, offers its customers a cheapest-to-deliver optimization across
portfolios. Other possible allocation preferences include allocating high-quality liquid assets
for short-term trades and cheapest-to-deliver collateral for long-term trades; optimizing the
collateral allocation based on the source of collateral (from the dealer’s trading desk, its
clients, or its treasury assets); and allocating low value-at-risk assets to fixed-income, currency,
and commodity trades and high value-at-risk assets to tri-party trades. Many dealers prefer
to use their own allocation method or to supplement BNYM’s optimization tools.

Dealers rank which securities to pledge as collateral as part of the matching process,
effectively ranking collateral from cheapest to richest to deliver. For example, the schedule
provided in marketing material gives the following preference order: municipal bonds; ABS

1Dealers often use on-the-run Treasuries as general collateral—which is not a mistake. A dealer long
on-the-run Treasuries might find financing for the position at a lower rate early in a trading session while
other investors are short the CUSIP or while other dealers are looking for the CUSIP. The CUSIP is no
longer desirable once the shorts are covered, and it will trade as general collateral.
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and CMOs; medium-term notes; corporate bonds; Ginnie Mae MBS REMIC; Ginnie Mae
stripped MBS; MBS pass-throughs; GNMA MBS; TIPs bonds and notes; and, finally, Treasury
bills, bonds, notes, and floating-rate notes.

Within Treasury collateral—my focus—dealers prefer to allocate the least liquid, longest-
maturity, and odd-lot Treasuries so that the unencumbered assets remaining in the dealer’s
box are round lots of short-dated bills. Short-dated Treasuries are helpful if unexpected
margin calls or calculation errors require additional delivery of securities.

Although cash lenders do not control what collateral they receive at the CUSIP-level, they
control what collateral types they receive. For fixed income, lenders can choose acceptable
collateral from 87 types of fixed-income securities across 17 buckets of securities. Cash lenders
can also allow equity collateral. The lender can choose additional constraints for equity
collateral, such as the maximum market capitalization percentage that borrowers can pledge
and the collateral value as a share of that security’s average traded volume. Lenders can
specify even more granular cuts or make manual adjustments. The online appendix provides
more details on the collateral types and the allocation process.

3 Model

Setup I build a simple two-period model in the spirit of Krishnamurthy and Vissing-
Jørgensen (2015). The model has two periods, t and t+ 1. Agents make decisions in period
t before any dividends have been paid, and uncertainty resolves in period t+ 1. There are
three components of the model: a household sector, a bank, and a government. There are five
assets, an unboxed Treasury bond θub—denoted θHub if held by households and θBub if held by
the bank—a boxed Treasury bond θb, a bank liability B, a Lucas tree with terminal value K
that pays dividends kt and kt+1, and tradable equity in the bank E that pays dividends divt
and divt+1. The bank liability B is analogous to a repurchase agreement, and the Lucas tree
is equivalent to a real asset, either a business or land. It is cheaper for the bank to pledge
the boxed bond as collateral underlying the bank repo B compared to the unboxed Treasury
bond. The returns to the Treasury bonds, bank liability, Lucas tree, and bank equity are
stochastic, but households know the Lucas tree dividends with certainty.

In period t, households and the bank make allocation decisions, and the tree pays dividend
kt. The allocation decisions in period t pin down the bank’s dividend payments unless the
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bank’s haircut changes. The bank pays divt immediately after agents make their choices in
period t. In period t+ 1 uncertainty resolves, the returns on the assets are known, the bank
pays out divt+1, and the tree pays out its dividend kt+1.

The model generates its predictions from three features. First, the model assumes that
households earn nonpecuniary utility from holding money-like safe assets, denoted M :

M t = πBB + πθubθ
H
ub + πθbθ

H
b

M t+1 = πBB(1 +RB) + πθubθ
H
ub(1 +Rθub) + πθbθ

H
b (1 +Rθb),

where πi allows for varying money weights for different safe assets and πi > 0 for any safe
asset i. Such a feature can be motivated by the demand for a transaction medium as in
Krishnamurthy and Vissing-Jørgensen (2015)—motivated by Krishnamurthy and Vissing-
Jørgensen (2012)—and Stein (2012), and is consistent with the literature on money in the
utility function from Tobin (1965).

Second, the model imposes a stochastic haircut requirement on the bank’s deposit con-
straint. The bank is a technology that transforms collateral on its balance sheet—in the form
of Lucas trees or Treasuries—into safe assets in the form of bank liabilities B subject to a
haircut across its assets. If the bank could issue liabilities equal to its assets (i.e., without
a haircut), it could lever infinitely and hold zero equity. The model assumes an exogenous
haircut prevents the bank from leveraging up past a certain point and that the haircut can
change between period t and t+ 1. The model also imposes that the bank cannot issue more
equity, motivated by Kashyap et al. (2010)’s finding that equity issuance costs prevent banks
from issuing equity to offset capital shocks in the short term.

The assumption that banks produce safe assets subject to a haircut is realistic. Banks can
be leverage constrained through a regulatory channel by capital requirements (e.g., common-
equity Tier 1 ratio) or leverage requirements (e.g., supplemental leverage ratio). Banks
can also be leverage constrained through a market discipline channel. Even if regulatory
constraints are not binding, private lenders may not want to supply more funding to risky
banks. Macchiavelli and Zhou (2022) empirically show that money funds lend to different
banks at varying repo haircuts and rates depending on their relationships.

Third, I assume that assets have exogenous money weights, denoted πi, to account for
the ability of that specific security to satisfy the household’s money-like safe asset demand.
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For example, on-the-run Treasuries—which the model assigns a comparatively higher money
weight—typically have higher prices and lower yields because households prefer more liquid
safe assets, all else equal.

Households Households are endowed with a share of the bank, worth E, and K units of
the Lucas tree that pay dividends in each period and have a terminal value of K(1 +RK) in
period t+ 1. The households can borrow from the bank, pledging λK as collateral, where
λ ∈ [0, 1] is the haircut on the collateral the bank offers on its loans.

Households choose their optimal allocation across five choice variables: α, the amount of
bank equity the households retain in the first period; λK, the size of the loan they get from
the bank by pledging their tree as collateral; B, their holding of the bank liability; θHb , their
boxed Treasury holding; and θHub, their unboxed Treasury holding.

Agents receive nonpecuniary utility from holding money-like safe assets, Ω(M ), where
Ω′(M ) > 0,Ω′′(M ) < 0, limM→0 Ω′(M ) = ∞, and limM→∞Ω′(M ) = 0. In the standard
two-period setup, an agent weighs the asset’s cost and the associated consumption decline in
the current period against the asset’s payoff and the marginal utility in the two states. In
this model, agents have an extra incentive to hold more money-like safe assets unrelated to
their returns.

The household’s problem is

U(ct, ct+1) = max
α,λK,B,θHub,θ

H
b

u (ct + Ω (M t)) + βEt [u (ct+1 + Ω (M t+1))] , (1)

where

ct = kt + (1− α)E + αdivt + λK −B − θHub − θHb
ct+1 = kt+1 + αdivt+1 + (1− λ)K(1 +RK) +B(1 +RB) + θHub(1 +Rθub) + θHb (1 +Rθb).

Further define Ct = ct + Ω(M t) and Ct+1 = ct+1 + Ω(M t+1). The first-order conditions for
θHub, the household’s choice of unboxed Treasury bonds are

1 = Ω′(M t)πθub + Et
[
βu′(Ct+1)
u′(Ct)

(1 +Rθub)(1 + Ω′(M t+1)πθub)
]
. (2)

The first-order conditions for both types of Treasuries and the bank liability B are similar
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because they satisfy the agent’s safe-asset demand. For now, I will make the simplifying
assumption that πθb = πθub = πB = 1.

Bank The bank is a technology that transforms its assets into money-like bank liabilities
B. The bank’s assets are boxed Treasuries, θBb , unboxed Treasuries, θBub, and the loans the
bank makes against Lucas tree collateral, λK. Define the bank’s assets A = λK + θBb + θBub.
The bank must pay some costs to administer its assets: φ(λK), µ(θBub), and µ(θBb − κ), where
κ > 0 reflects that boxed Treasuries are cheaper for the bank to hold and pledge as collateral
compared to unboxed Treasuries. The bank can transform unboxed Treasuries into boxed
Treasuries by paying a flat fee. The bank faces a stochastic liability issuance limit in the
form of an exogenous haircut ht across the bank’s entire collateral portfolio, equivalent to its
assets, each period:

B ≤ (1− ht)(λK + θBub + θBb )

B(1 +RB) ≤ (1− ht+1)
(
λK(1 +RK) + θBub(1 +Rθub) + θBb (1 +Rθb)

)
.

(3)

Haircuts ht are stochastic; for example, the government may impose a haircut on B, forcing
the bank to delever and pass on lower RB to the households in period t+ 1.

The bank chooses three variables: the haircut λ it offers on Lucas trees for the loans it
underwrites to households and the bank’s Treasury positions, θBb and θBub. The bank does not
charge a haircut on its Treasury holdings, reflecting Holmström (2015)’s “no questions asked”
principle. The bank’s choices maximize its equity value, the expected sum of its dividends:

E = max
λ,θB

b
,θBub

divt + βEt [divt+1] (4)

where

divt = B − λK − θBub − θBb − φ(λK)− µ(θBub)− µ(θBb − κ)

divt+1 = λK(1 +RK) + θBub(1 +Rθub) + θBb (1 +Rθb)−B(1 +RB).

Government The government issues Treasury bonds in fixed total supply Θ, which are
held by either the bank or the household: Θ = θBb + θBub + θHb + θHub.

For tractability, I make several standard assumptions following Campbell (2017). I assume
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that households have time-separable power utility and constant relative risk aversion γ over
consumption, consumption is conditionally lognormal, and consumption and asset returns are
jointly conditionally homoskedastic. I assume that Ω(M ) = log(M ) and that log consumption
growth follows

log
(
Ct+1

Ct

)
≡ ∆ct+1 = µc + σcεt+1,

where the shocks εt+1 ∼ iid N (0, 1).

Proposition. The collateral premium is positive because it is compensation for bank leverage
risk when σc,θb = σc,θub and πθub > πθb.

Proof. Assuming µh = 0 and γσcσh = 0, standard arguments yield the geometric risk premium
(ignoring the Jensen component) for the unboxed Treasury’s return:

Et[rθub,t+1 − rf,t+1] ≈ γσc,θub − σh,θub − ω′θub
(M t), (5)

where log (1 + Ω′(M t+1)πθub) = µh + σhεt+1, rθub,t+1 = log(1 + Rθub,t+1), and −ω′θub
(M t) =

log(1 − Ω′(M t)πθub). Following Campbell (2017), σc,θub is the conditional covariance of
log unboxed Treasury returns and consumption growth, which under the homoskedastic
assumption is equivalent to the unconditional covariance of innovations to Covt(ct+1−Etct+1,

rθub,t+1−Etrθub,t+1). I define σh,θub analogously. The risk-free rate is rf,t+1 = − log(β) + γµc−
1/2γ2σ2

c . An analogous result holds for the boxed Treasury. The online appendix provides
additional discussion of the expected return of Treasuries in the model.

The collateral premium is the difference between the boxed Treasury’s and unboxed
Treasury’s returns:

Et[rθb,t+1 − rθub,t+1] ≈ σh,θub − σh,θb + log
[

M t − πθb
M t − πθub

]
. (6)

Because both types of Treasuries are safe assets, I make the simplifying assumption that
σc,θb and σc,θub are small and equal. The right-most term reflects the differences in the money
weights of the two bonds. Because banks will use the least money-like bonds as collateral, I
expect πθub > πθb > 0, which implies the right-most term is positive when M t > 1.
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The collateral premium is the difference in their haircut covariances when the bonds have
identical money weights:

Et[rθb,t+1 − rθub,t+1] ≈ σh,θub − σh,θb > 0. (7)

The collateral premium is positive when σh,θub > σh,θb . I empirically verify σh,θub > σh,θb and
that σc,θb is approximately equal to σc,θub in Table A1.

In practice, banks persistently use some Treasury CUSIPs as collateral, as discussed in
section 2. Once repo borrowers place their Treasuries in the box (i.e., a boxed Treasury)
at the tri-party repo clearing bank, those Treasuries tend to stay in the box. Because of
the market structure, dealers use Treasuries placed in the box as collateral more often than
unboxed Treasuries. Therefore, boxed Treasuries are more exposed to bank leverage risk
shocks than unboxed Treasuries.

The online appendix provides comparative statics of the model in Figure A1 using
estimated parameters from Table A1 and discusses the effect of the collateral premium on
the convenience yield.

4 Data

I use two data sets to test the model’s implications and measure the collateral premium. The
first data set includes collateral data from tri-party repos with money market funds. The
second data set measures bank leverage constraints using bank-intermediated basis trades.

4.1 Collateral

Beginning in November 2010, the Securities and Exchange Commission (SEC) required money
market funds (MMFs) to disclose granular data on their portfolios every month in form
N-MFP. The disclosure details the fund’s portfolio at the end of the month, and the fund
must file the form within five days after month-end. The SEC initially delayed publication of
the data for 60 days but dropped the delay in September 2014. In October 2016, the SEC
made small adjustments to the form and updated it to N-MFP2. I use N-MFP/2 data that
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is collected by the Office of Financial Research as part of its U.S. Money Market Monitor.2

The N-MFP and N-MFP2 include details about the fund at an aggregate level, including
its daily liquid assets, and data on the fund’s portfolio, often at the CUSIP level. When
a fund owns a security outright, the form includes the issuer’s name (e.g., “U.S. Treasury
Note”), the title of the issue (“U.S. Treasury Note 2.454300%”), the legal entity identifier for
the security, and the category of the security. The form also includes data on collateral used
in repos. In the case of repo, the issuer is the counterparty (“Wells Fargo Bank NA”), and
the form includes the value of the collateral, the coupon or yield, the collateral maturity date,
the principal amount of the collateral, and the category of the collateral (e.g., asset-backed
security, U.S. Treasury, equities). Infrequently, a fund denotes that hundreds of securities
back a repo and do not list individual security details. The filings do not have security-level
specific identifiers, so matching the collateral securities to other data requires manual cleaning
from the fund-provided text collateral descriptions.

I focus on Treasury note and bond collateral in repos. Given the coupon rate and
the maturity, I match Treasuries to their CUSIPs. My data include roughly 9.6 million
collateral-month observations across all collateral types. I match about 1 million of these
observations to Treasury CUSIPs, which I merge to the daily CRSP (Center for Research in
Security Prices) Treasury data set. There are five instances in which a Treasury coupon and
maturity do not uniquely identify its coupon; in these cases, I use the CUSIP corresponding
to the larger issue. I require the Treasury CUSIP to have both monthly return data and
publicly-held outstanding data; if publicly held outstanding data are missing, I instead use
the total amount outstanding. I also hand-clean the repo counterparty data because the
same firm may conduct repos using different legal entities. I manually identify 70 unique
cash borrowers of the roughly 2,800 different names used as repo counterparties in the data,
including banks, broker-dealers, government entities (the Federal Reserve, Freddie Mac, and
the Federal Farm Credit Banks), mortgage real-estate investment trusts, and others.

Table 2 presents summary statistics for the repo deals in my sample, focusing on Treasury
collateral repos. There are about 302,000 repo transactions in the sample, and those repos
have about 1 million collateral observations, implying the average repo has about three
different CUSIPs as collateral. For Treasury repos, there are 238 cash lenders (money market
mutual funds) and 1,819 unique cash borrowers. In value-weighted terms, almost all Treasury

2See https://www.financialresearch.gov/money-market-funds.
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CUSIPs are used as collateral in some non-zero amount. Treasuries used as collateral have
slightly longer maturity, remaining maturity, and duration than the full Treasury universe.

Collateral Use Persistence Some Treasury CUSIPs are used as collateral persistently,
even after controlling for observables, for two reasons. First, dealers agree on which Treasuries
to place in the box because dealers implicitly agree on which Treasuries are least money-like.
Second, the tri-party custodian facilitates same-day settlement by placing collateral from
the borrower’s box into the lender’s box, both of which are accounts held on the custodian’s
balance sheet, so the collateral does not leave BNYM’s balance sheet. Once the repo borrower
puts some CUSIPs in their box, they tend to stay there. The CUSIP leaves the box if the
dealer sells the security outright, changes strategy, or if the CUSIP starts trading special.

Once placed in a box for use as collateral, dealers use these Treasuries as collateral
persistently in the time series within dealer and cross section across dealers. I show collateral
persistence by defining a variable Collateral Sharei,d,t which reflects dealer d’s use of CUSIP
i in month t as a share of the total amount of collateral used by that dealer in that month:

Collateral Sharei,d,t = CUSIP Collaterali,d,t∑
iCUSIP Collaterali,d,t

.

If a dealer used only two CUSIPs as collateral in a month with values of $90 and $10, then
Collateral Sharei,d,t = 0.9 for the first bond.

I show time-series persistence by regressing a dealer’s date t collateral share of a specific
CUSIP on that dealer’s collateral share for the same CUSIP lagged by 1 month or 12 months,
and I run the regression once for each dealer

Collateral Sharei,d,t = α + βCollateral Sharei,d,t−1 + εi,d,t.

I plot the β coefficient in Figure 1 for each dealer. The left panel shows that a dealer’s
collateral share is highly correlated from one month to the next. The right panel shows the
same at a 12-month horizon. The persistence is statistically significant for all dealers in my
sample at the 1-month horizon and for most at the 12-month horizon. The average point
estimate at the 1-month horizon is 0.34 and at the 12-month horizon is 0.16.

I also show collateral persistence in the cross section: If a benchmark dealer boxes the
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Treasury, other dealers likely box the same Treasury. To test across dealer persistence, I
use Société Générale as the benchmark dealer, although the results are similar for any large
dealer. I run the following regression:

Collateral Sharei,d,t = α + βCollateral Sharei,SocGen,t + εi,d,t.

I plot the t-statistic for β from the regression in Figure 2 against the monthly average repo
collateral pledged by that dealer, highlighting global systemically important banks (G-SIBs)
in blue. The larger a dealer’s tri-party repo business, the more they agree on which Treasuries
to box. Almost all dealers with an average of more than $5 billion of pledged Treasury
collateral have significant collateral share correlations.

Measuring the Collateral Premium I calculate the collateral ratio (CR) for each Trea-
sury CUSIP i to measure the intensity of that Treasury’s use as collateral in month t:

CRi,t =
(
Market Value of Treasury CUSIP i used as Repo Collateral

Market Value of Treasury CUSIP i

)
t

. (8)

I exclude Treasury CUSIPs pledged by the Federal Reserve when calculating a CUSIP’s
collateral ratio because the Federal Reserve is not subject to leverage constraints like banks.
The bottom of Table 2 presents summary statistics of the collateral ratio. There is considerable
variation in CR across CUSIPs and across time. The average CR is 2.4 percent, with a
cross-sectional standard deviation across CUSIPs of 2.3 percent and a time-series standard
deviation of 1.3 percent (i.e., a CUSIP’s own collateral ratio volatility over time). Figure 3
provides a box plot of the equal-weighted collateral ratios across CUSIPs by year; the average
and variance of CR grow through the sample, the latter shown by the growing interquartile
range.

Table 3 correlates Treasury collateral ratios on bond observables. Treasury CUSIPs with
higher collateral ratios are less liquid, older, have longer maturity remaining, and have higher
duration. The last column shows that Treasury CUSIPs have lower collateral ratios when they
are lent by riskier banks, which I measure using CDS spreads. I calculate the CUSIP-specific
CDS spread of banks using that CUSIP as collateral, and I weight by the amount of collateral
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pledged by the dealer. For example, if two dealers both pledge $100 of a CUSIP as collateral
and the dealers have CDS spreads of 0 and 100 bps, then the average CDS spread for that
CUSIP is 50 bps. I provide additional details on the CDS data in the online appendix.

The riskiness of dealers pledging collateral varies considerably over time, leading to
differential exposures to bank leverage risk across Treasuries. Figure 4 shows the average and
range of the CUSIP-specific CDS spreads each month. During the euro crisis, the variation
in CUSIP-specific CDS spreads increased dramatically. Some Treasury CUSIPs were pledged
by dealers with an average CDS spread below 100 bps, and other CUSIPs were pledged by
dealers with an average CDS spread above 400 bps.

I construct the collateral premium strategy by sorting Treasuries by their collateral ratios
and liquidity. The collateral premium is the return an investor would earn by holding a
portfolio long Treasuries used as collateral often and short Treasuries used as collateral less
often. I double-sort Treasuries by their liquidity and collateral ratio to control for liquidity
differences:

Collateral Premium =Hi CR/Low Liq + Hi CR/Mid Liq + Hi CR/High Liq
3

− Lo CR/Low Liq + Lo CR/Mid Liq + Lo CR/High Liq
3 .

(9)

Money market funds release their data with a lag, so I lag the collateral ratio trait by one
month to ensure the collateral ratio is in investors’ information sets. I measure liquidity using
the monthly average of daily bid-ask spreads for each Treasury CUSIP, also lagged by one
month. Following the sorting procedure in Asness et al. (2013), I independently sort each
Treasury CUSIP into a CR tercile and a liquidity tercile using the lagged data.

Table 4 gives the annualized average return for the sorts. The annualized average collateral
premium, controlling for liquidity, is 22 bps per year with a standard deviation of 1.66 percent.
A portfolio long Treasuries in the high-CR tercile and short Treasuries in the low-CR tercile
without controlling for liquidity has an average annualized return of 30 bps with a standard
deviation of 2.52 percent. Table 5 reports the average returns and standard deviations for
the tercile sorts. Averaging across the bottom High−Low row gives the collateral premium of
22 bps per year.

Figure 5 plots the cumulative return over the full sample. Average annual returns of
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two-year and five-year Treasury notes between 2011 and 2018 were 0.83 percent and 2.34
percent, so the collateral premium is economically large by comparison, 27 percent of a
two-year note’s return and 9 percent of a five-year note’s return. As expected, the collateral
premium is most volatile during the European sovereign debt crisis in 2011 and 2012, as
waves of good and bad news led to large swings. Notably, in the fall of 2011 the collateral
premium had large net gains as markets digested news about central bank support for FX
swaps and political progress on broader recapitalization plans for European banks.

Tercile sorts are useful because they provide tractable ways to mimic investable strategies,
but they collapse information along other dimensions. I use nearest-neighbor matching to
estimate the collateral premium more precisely. I match Treasuries used often as collateral
to their nearest-neighbor Treasury not used often as collateral. I sort Treasuries into two
equal-sized buckets: high- or low-CR, where the latter has many Treasuries with CR = 0.
I match Treasuries to their nearest neighbor in the other bucket using duration, liquidity,
and maturity remaining each month. Table 6 shows the matching results. Each column
shows the annualized average difference in monthly returns between Treasuries in the high-
and low-CR halves using different distance metrics. The nearest-neighbor match shows the
collateral premium is between 13 and 16 bps, lower than the tercile-sorted collateral premium,
as expected, but not far from the tercile-sorted 22 bps estimate and always positive.

4.2 Bank Leverage Constraints

I estimate bank leverage constraints using bank-intermediated basis trades identified in
Boyarchenko et al. (2020). I proxy bank leverage constraints using bank-intermediated
arbitrage returns across two products: interest rates and foreign exchange. The rates trades
include cash U.S. Treasury versus swaps (2y, 5y, 10y, 20y, 30y) and the cheapest-to-deliver
cash Treasury versus Treasury futures (2y, 5y, 10y, 20y, 30y). The foreign exchange trades
are covered interest parity trades in the spirit of Du et al. (2018) for AUD, CAD, CHF,
DKK, EUR, GBP, JPY, NOK, NZD versus USD, at one-week, one-month, and three-month
maturities, using overnight indexed swap (OIS) or interbank offered rates. The online
appendix describes the assumptions for secured and unsecured funding costs, initial margin,
and variation margin to calculate the bases.

There are many advantages to using market data to estimate bank leverage constraints.
Pasquariello (2014) shows that financial dislocations, measured through arbitrages in stocks,
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foreign exchange, and money markets, indicate periods when the marginal utility of wealth is
likely high. I focus on arbitrages that are bank-intermediated and aggregate them together
to minimize idiosyncrasies in any given market. There is good reason to believe that bank
balance sheet measures do not fully reflect intermediaries’ true economic leverage due to
window dressing, netting across contracts, and risk weights.3 Balance sheet data are often
unavailable for non-public or foreign intermediaries. Moreover, the arbitrages are not exotic;
intermediaries can trade them easily. Because banks from many countries participate in these
markets, the measure captures the marginal value of global intermediaries’ wealth at a daily
frequency.

The measure is not without drawbacks. First, it is limited to public data. When possible,
I approximate the costs with public data but cannot include institution specific funding costs,
haircuts, or capital charges. The data cannot estimate the effect of capital charges on the
trades, as capital charges apply across the entire trading book rather than a single trade.
Second, none of the basis trades are true arbitrages. They are exposed to noise-trader risk,
horizon risk, and model risk. Perhaps most important, the measure of the annualized basis
trade returns assumes no change in funding costs. The assumption is reasonable in normal
times but likely underestimates distortions in bad times.

Finally, I estimate daily bank leverage constraints by aggregating the basis trades to
a single measure called ArbConstraint. I also estimate daily innovations to bank leverage
constraints, ArbFac, following the method of He et al. (2017). The online appendix describes
the aggregation and daily innovation methodology.

5 Empirical Results

I show that the collateral premium is positive because it is compensation for bank leverage risk.
Treasuries are useful as collateral when intermediaries can pledge them, which mechanically
requires the bank to use leverage. There are fewer money-like safe assets available when
banks become constrained because banks produce fewer private safe assets. Investors then

3In the U.S., firms are allowed to net certain collateralized financing transactions. The transactions appear
neither on their balance sheet nor in aggregate measures, like the Federal Reserve’s Financial Accounts.
Gorton et al. (2020) collect data on collateral pledged from six large broker-dealers’ 10-Qs and show that
collateral pledged—roughly equal to the volume of collateralized financing transactions—fell $2.7 trillion from
2007Q2 to 2009Q1. In contrast, on-balance-sheet repo for the entire bank and broker-dealer industry fell by
only half that amount over the same period.
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bid up the prices of the remaining safe assets, like Treasuries, which is equivalent to pushing
their yields down. When banks become leverage constrained, unboxed Treasuries’ prices
increase more than boxed Treasuries’ prices because banks are less willing to buy and hold
boxed Treasuries when they are less useful as collateral.

I show that the collateral premium is positive because it loads on bank leverage risk
in five ways. First, I show that the collateral premium covaries with innovations to bank
leverage constraints. Second, I show that low-CR Treasuries’ yields fall by more than high-CR
Treasuries’ yields when banks are leverage constrained. Third, I show that bonds used as
collateral by leverage-constrained banks—which I define as European banks in the earliest
stages of the European sovereign debt crisis—had lower returns than Treasuries held by other
banks. Fourth, I perform an event study and show that Treasuries have negative abnormal
returns after banks begin using that specific CUSIP as collateral. I reject the hypothesis that
the CUSIP has lower returns because of other risk-compensated characteristics. Fifth, I use
the Federal Reserve’s annual stress tests as an exogenous shock to bank leverage constraints to
show abnormal Treasury returns are linked to the specific banks that are using that Treasury
as collateral. I find that when banks’ leverage constraints ease, the Treasury CUSIPs they
hold as collateral have higher returns.

The Collateral Premium and Innovations to Bank Leverage Constraints Table 7
shows that daily innovations to bank leverage constraints covary with the collateral premium,
even after controlling for changes in the riskiness of the banking system and changes in
Treasuries’ liquidity. The first column shows the results from regressing the collateral premium
on ArbFac with no controls or fixed effects. A two standard deviation increase in ArbFac
corresponds to a concurrent collateral premium return of 0.9 bps (column 3). When not
sorted to control for liquidity, the collateral premium is positively correlated with ArbFac
but not significantly, as shown in the last three columns.

Yields by Bank Constraint State If the collateral premium is compensation for bank
leverage risk, then boxed bonds should have relatively lower prices—and higher yields—than
unboxed bonds in bad states when marginal utility over money-like safe assets is high. I show
that yields for boxed and unboxed Treasuries fall—equivalent to prices increasing—when
banks are constrained, but unboxed Treasuries’ yields fall more than boxed Treasuries’ yields.
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In other words, both boxed and unboxed Treasuries hedge contractions in the safe-asset
supply, but boxed Treasuries are worse hedges than unboxed Treasuries. I calculate the
value-weighted yield to maturity for each leg of the collateral premium analogous to equation 9.
I define high and low bank constraint states by sorting ArbConstraint into buckets based on
the median level of ArbConstraint.

Table 8 shows the difference in high- and low-CR portfolios’ yields, less the one-month
T-bill rate. The table shows the CR and liquidity double-sorted portfolios’ yields. The
low-CR portfolio has lower yields than the high-CR portfolio. Consistent with the model
intuition, yields fall when moving from the unconstrained to the constrained bank leverage
state. The effect is equivalent to their prices increasing. Bank leverage risk shows up in
the table’s last row. The low-CR portfolios’ yields fall by more than those of the high-CR
portfolios when banks become constrained. The yield spread for the double-sorted portfolios
grows 9 bps.

European Crisis Event I use the cross-sectional dimension of my collateral data to show
that bank leverage constraint risk, rather than some other bond characteristic, is the collateral
premium’s primary driver. Bonds used as collateral must have worse returns in bad states
if the collateral premium is compensation for bank leverage risk; otherwise, there is no risk
that requires compensation. I show that bonds used as collateral by European banks during
the initial panic stage of the European sovereign debt crisis had lower returns than otherwise
similar bonds used as collateral by non-European banks.

I perform a difference-in-difference on Treasury returns to compare bonds used as collateral
by European and non-European banks during the initial stage of the European sovereign debt
crisis in July 2011. I use Stracca (2013)’s identification of euro crisis event dates. He identifies
crisis events by comparing the average 10-year government bond yield spread for Italy and
Spain versus German bunds. He identifies events using three criteria: there must be large
jumps in the spreads to bunds; the jumps should be associated with a significant political
event; and the jump should not be explained “even potentially” by a non-euro-related event
on the same day. The first adverse event Stracca (2013) identifies is on July 11, 2011, when
“the crisis engulfs Italy.”
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I estimate the difference-in-difference regression:

ri,t = α + γ1I(Post) + γ2I(Treated) + γ3I(Post)× I(Treated) + β′Xt + εi,t, (10)

where t is a month, i is a Treasury CUSIP, and Xt is a vector of controls, including the
CUSIP’s duration, liquidity, remaining maturity, and a on-the-run indicator variable. I weigh
the regression with the market value of each CUSIP. I define I(Post) = 1 if the date is after
July 11, 2011, and 0 otherwise.

I define the treatment group as CUSIPs that are intensively used as collateral by European
banks. I calculate a CUSIP’s European bank share as the share of a CUSIP used as collateral
by European banks relative to that CUSIP’s total use as collateral in April 2011, one quarter
before the July event. I set I(Treated) = 1 for bonds above the median European share in
April 2011. The average European bank share is 96 percent for the treatment group and 43
percent for the control group. I run the difference-in-difference regression over a period of five
months before and after the July 11 event. I estimate the difference-in-difference regression
separately for high- and low-CR bonds. I use contemporaneous collateral ratios because I am
interested in ex post outcomes.

The test assumes only European banks were treated, meaning that only European banks
became leverage constrained. Ex post CDS spreads show that this assumption is a reasonable
approximation. Classifying treated banks as those with the largest CDS spread changes does
not materially change the results.

Table 9 presents the regression results. The first two columns use high-CR bonds, and the
last two columns use low-CR bonds. The main result is shown in the I(Post)× I(Treated)
row in the first two columns: Among high-CR bonds, high European bank share bonds had
lower returns than similar bonds used as collateral by non-European banks. European banks’
high-CR bonds had 57 bps lower average monthly returns, as shown in column (2). Bonds not
used as collateral—low-CR bonds—should not have as large of a return differential depending
on whether European or non-European banks pledged them. I confirm this logic in columns
(3) and (4), where the interaction term coefficient is weakly negative and not different from
zero.

As the euro crisis accelerated, interest rates fell, and risk-off sentiment drove a flight-to-
safety, boosting the returns across all types of Treasuries. Therefore, the I(Post) coefficient is

23



positive and significant for all specifications. Figure 6 visualizes the parallel trends assumption
of the difference-in-difference regression. In the top-left panel, there is no evident trend in
the treated or control groups’ returns before July 2011; after the event, the difference grows
dramatically.

Dollar funding played a significant role in European banks becoming leverage constrained
over this period; the liquidity shock was a specific manifestation of a bank leverage shock.
Correa et al. (2017) show how dollar funding shocks caused banks to cut lending to U.S. firms.
European banks facing a liquidity shock needed dollars to pay down their dollar-denominated
debt and delever, so they sold their dollar-denominated short-term trading assets, especially
Treasuries. Market commentary from that period shows that European bank deleveraging
concerns reached beyond money funds (Van Steenis et al., 2011). In October and November
2011, the euro-dollar basis was at extreme levels, indicating European banks were willing to
pay a large premium for dollars. As a robustness check, I exclude October and November
2011 from the difference-in-difference regression and find similar results.

Actual versus Predicted Event Study When a CUSIP jumps from low to high collateral
use, it becomes riskier as it now loads more on bank leverage risk, and it should have lower
realized returns after the event. I show that Treasuries have lower realized returns after
banks use them more as collateral. I also show that the lower returns are not due to other
risk-compensated characteristics. I perform an event study for Treasury returns around the
event of CUSIPs moving from the low-CR tercile to the high-CR tercile. I find that bonds
have negative cumulative abnormal returns after making the jump. The result is consistent
with the bond earning a larger risk premium once dealers use the bond as collateral more
because the bond now loads on bank leverage risk.

I define a jump event as the first date a CUSIP moves from a low-CR tercile directly to the
high-CR tercile. I use the 10-year Treasury return as the benchmark to estimate abnormal
returns. I estimate the CUSIP’s beta to the benchmark using daily data in the quarter before
the event: ri,t = αi + βir10yr ,t + εi,t. The abnormal return, ARi,t, is the difference between
the predicted return and the actual return.

In Table 10 I test whether CUSIPs have negative abnormal returns after they make the
jump to higher collateral use by regressing a CUSIP’s abnormal returns on a dummy equal
to 1 after the CUSIP makes the jump and 0 before. The first two columns show the average
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abnormal return is negative in the 3 days (10 days) after the jump in column 1 (2). Column
1 shows that the average abnormal return is 1.8 bps lower in the 3 days after the jump than
in the 3 days before the jump.

The blue line in Figure 7 shows the value-weighted average cumulative abnormal return.
There is no obvious pattern in the average cumulative abnormal return for Treasuries before
the event. After the event, realized abnormal returns are lower.

Do Treasuries have lower realized abnormal returns because banks use them more as
collateral, or do they exhibit some characteristic that makes banks more likely to use them
as collateral? I compare abnormal returns around the actual event to a predicted event to
answer the question.

I forecast CRt+1 using a Treasury CUSIP’s observables available at time t. The predicted
event is the first date when I predict a Treasury CUSIP will jump from the low-CR to the
high-CR tercile. Suppose the cumulative abnormal return falls after the predicted event. In
that case, the actual event study shows that bonds with specific characteristics have lower
returns and that those same characteristics are why banks use the bonds as collateral more
often.

I estimate Et[Tercile(CRt+1) = High | Tercile(CRt) = Low] with a one-step-ahead cross-
validated LASSO with candidate explanatory variables including maturity remaining, age,
and dummies for whether the security is a bond or note. The LASSO also includes lagged
variables: duration, the market value of the issue outstanding held by the public, yield,
change in yield, monthly return, liquidity, and collateral ratio. I calculate abnormal returns
by estimating the CUSIP’s beta to the 10-year benchmark Treasury returns using daily data
over the quarter before the event.

Table 10 columns (3) and (4) show the results from the predicted event study, and the
red line in Figure 7 shows the value-weighted average cumulative abnormal return from
the predicted event study. I find that abnormal returns after the predicted event are not
statistically different from zero. In contrast, the abnormal returns after the actual event are
different from zero and negative. I reject the hypothesis that some other risk-compensated
characteristic explains why banks use the bonds more often as collateral.

Stress Tests and Collateral Returns In the post-crisis era, the Federal Reserve conducts
annual stress tests for large banks. The Comprehensive Capital Analysis and Review (CCAR)
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test incorporates the bank’s capital plans and studies whether the bank maintains post-stress
capital adequacy given an adverse scenario set by regulators. The Fed can object to a bank’s
capital plans if the bank does not maintain capital adequacy in the CCAR. The Fed can also
request that a bank resubmits its capital plans. The CCAR’s results are important for banks’
ability to pay dividends, lever up, or expand their balance sheets.

The Federal Reserve’s annual bank stress tests provide a natural experiment to identify
the effects of bank leverage constraints on collateral returns. Often, increases in bank leverage
constraints coincide with a flight to safety and increased risk aversion, which boosts Treasuries’
prices. Such dynamics are absent in a small window around the announcement of stress test
results. The stress tests can change bank leverage constraints, but the announcements of the
tests’ results does not coincide with bad times and a concomitant flight to safety.

I show that a bank’s performance in the stress test has a material and priced effect on
the collateral that the bank pledges. First, I calculate abnormal returns for each bank in my
sample and for each Treasury used as collateral. I calculate abnormal returns for banks by
regressing that bank’s stock excess return on the Fama–French excess market return using
daily returns over the previous quarter before the results announcement. I calculate abnormal
returns (in basis points) for each Treasury CUSIP used as collateral in a similar process using
the 10-year Treasury return index from CRSP.

Treasury CUSIPs are typically used as collateral by several banks, so I calculate a Treasury
CUSIP-specific value-weighted abnormal bank stock return with weights given by the bank’s
use of that CUSIP as collateral as a share of all banks’ use of that CUSIP as collateral in
each month. For example, if only three banks use a CUSIP as collateral in equal amounts,
then the value-weighted abnormal bank stock return assigned to that CUSIP would be the
average of the three banks’ abnormal returns. I lag the value weights by one month to reflect
the data lag. I provide additional details on the banks included and the dates of the tests in
the online appendix.

The first three columns of Table 11 show the regression of Treasury CUSIP abnormal
returns on that CUSIP’s corresponding value-weighted abnormal bank stock return on the first
trading day following the stress test results announcement. The table shows that Treasury
CUSIPs’ abnormal returns are strongly positively related to the abnormal returns of the banks
that use that Treasury as collateral: good news for the bank is good news for the collateral
that specific bank uses. When banks’ leverage constraints ease, the Treasury CUSIPs they
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hold as collateral have higher returns. The test uses only the first trading day following
the test because the identifying assumption is that bank leverage constraints are changing
without being confounded by a flight to safety or risk-off sentiment, which is likely true over
such a small time frame.

One concern is that it doesn’t matter which bank uses a bond as collateral, but instead
that Treasury abnormal returns could be explained by any bank’s abnormal returns in the day
after the stress tests. I reject this possibility with a placebo test. I calculate an equal-weighted
abnormal bank stock return for each Treasury CUSIP using only the banks that do not use
that CUSIP as collateral. If collateral returns covary only with a bank-wide risk factor, then
a regression of abnormal Treasury returns on any combination of banks’ abnormal returns
would yield a positive regression coefficient. The last three columns of Table 11 shows this is
not true for the day following the stress test announcements. Abnormal Treasury returns are
linked to which specific banks are using that Treasury as collateral.

6 Conclusion

Governments do not always issue enough safe assets, like Treasuries. Bank-produced liabilities
satisfy the remaining safe-asset demand. When short-term equity issuance is costly, banks
must use leverage and collateral to produce money-like safe assets. Banks’ ability to make
incremental safe assets varies considerably from day to day because their leverage constraints
vary from day to day.

Banks produce private safe assets using collateral, often repos backed by Treasuries. I
show that Treasuries used as collateral load on bank leverage risk because banks cannot pledge
more collateral when they are leverage constrained: pledging requires incremental leverage.
Safe-asset production is implicitly inefficient because Treasuries’ collateral values depend
on bank leverage constraints. Banks use long-term safe assets—like Treasury bonds—as
collateral to make money-like short-term safe assets—like repos—but those long-term safe
assets become riskier when banks use them as collateral.
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Figure 1: Time-Series Persistence of Boxed Treasuries. Plot gives the estimated beta coefficient with 95% confi-
dence intervals from the regression Collateral Sharei,d,t = α + βCollateral Sharei,d,t−1 + εi,d,t, where Collateral Sharei,d,t is the
collateral share of CUSIP i for dealer d at time t across all the Treasuries used as collateral by that dealer at that time:
Collateral Sharei,d,t = CUSIP Collaterali,d,t/

∑
iCUSIP Collaterali,d,t. Includes dealers and cash borrowers with at least 100

CUSIP by month observations.
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Figure 2: Cross-Sectional Persistence of Boxed Treasuries. Plot gives the t-statistics of the beta coefficient from the
regression Collateral Sharei,d,t = α+βCollateral Sharei,SocGen,t + εi,d,t, where Collateral Sharei,d,t is the collateral share of CUSIP
i for dealer d at time t across all the Treasuries used as collateral by that dealer at that time, and Société Générale is the
benchmark dealer to which all other dealers are compared. Blue dots denote global systemically important banks (G-SIBs) while
red dots represent all other dealers. Average repo collateral is the monthly average Treasury collateral pledged by that dealer in
my sample. Includes dealers and cash borrowers with at least 100 CUSIP by month observations.
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Figure 3: Time-Series Variation in Collateral Ratio. Box plot of the collateral ratio at the month-CUSIP level by year,
equal-weighted across CUSIPs. The blue bar in the middle of the box is the average collateral ratio in that year, the blue box
represents the interquartile range, and the lines up and down trace out the lower- and upper-adjacent values.
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Figure 4: CDS Spread Variation Across Treasury Repo Collateral. Figure shows the range and average of CUSIP-
specific CDS spreads over the full sample. The CUSIP-specific CDS spread is calculated by averaging the CDS spreads of the
dealers using a specific CUSIP as collateral; only dealers with traded CDS are included. I then collapse the CDS spreads to the
CUSIP-level, weighting by the dealers’ use of that collateral.
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Figure 5: Collateral Premium. Figure plots the cumulative return of the collateral premium, which double sorts to control
for liquidity, and the 2-year Treasury.
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Figure 6: Parallel Trends around July 2011 Euro Sovereign Debt Crisis Event. The top-left panel shows the predictive
margins of monthly returns for treated and control bonds estimated from equation 10 and shown in column (1) of Table 9, where
a treated bond is a bond that is more often pledged as collateral by European banks and is in the top tercile of contemporaneous
CR. The top-right panel shows the same predictive margins for treated and control bonds in terms of cumulative returns. The
bottom-left panel shows the value-weighted return for the portfolio of treated and control bonds in the sample of column (1) of
the table. The bottom-right panel shows the difference in the value-weighted cumulative return long the treated portfolio and
short the control portfolio from the bottom-left panel.
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Figure 7: Collateral Use: Actual and Predicted Event Studies. Plot shows the average cumulative abnormal returns
across Treasury CUSIPs on each day relative to the actual event (indexed to 0 at date 0), defined as the first date a CUSIP jumps
from the low-CR tercile directly to the high-CR tercile. The predicted event is the first date when I predict a Treasury CUSIP
will jump from the low-CR to high-CR terciles using a model to estimate the collateral ratio from the bond’s characteristics, e.g.,
the predicted date is when Et[Tercile(CRt+1) = 3|Tercile(CRt) = 1]. I form expectations using a one-step-ahead cross-validated
LASSO with candidate explanatory variables including maturity remaining, age, and dummies for whether the security is a
bond or note and lags of duration, the market value of the issue outstanding held by the public, yield, change in yield, monthly
return, liquidity, and collateral ratio. Abnormal returns are calculated by estimating the CUSIP’s beta to the 10-year benchmark
Treasury return using daily returns over the quarter before the event.
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8 Tables

Pre-Repo Post-Repo
Assets ($) Liabilities ($) Assets ($) Liabilities ($)

Cash 0 Repo 0 Cash 100 Repo 100

Treasuries 100 Equity 100 Treasuries 0 Equity 100

Repo-Encumbered Repo-Encumbered
Treasuries 0 Treasuries 100

Total 100 Total 100 Total 200 Total 200

Leverage 1 Leverage 2

Table 1: Safe-Asset Production via Bank Leverage. Figure shows a simplified bank’s balance sheet before and after a
repo transaction. In the pre-repo left panel, the bank has $100 in Treasuries funded with $100 in equity. In the post-repo
transaction, the bank pledges its Treasuries as collateral in a repo to borrow $100 cash. Leverage is equal to assets divided by
equity.
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Collateral Ratio > 0 Full Treasury Sample
Treasuries (daily average) Unique CUSIPs 280 285

Market Value (USD billions) 7,588 7,726
Original Maturity (months) 11.37 11.30
Remaining Maturity (months) 74.64 73.82
Duration (months) 59.59 58.93
On-the-run CUSIPs 5.68 5.73

Repo Transaction (full sample) N (Month-Collateral level) 1,029,166
N (Month-Repo level) 302,434
# Funds (Lenders) 238
# Counterparties (Borrowers) 1,819
# Borrower-Lender Pairs 5,266

Repo Transaction (monthly) Collateral Value (avg, USD millions) 236
Repo Value (avg, USD millions) 211
Collateral Value (sum, USD billions) 769
Repo Value (sum, USD billions) 681
Avg. Haircut 5.87%
Std. Dev Haircut (time-series) 3.41%

Collateral Ratio (monthly) Average 2.40% 2.38%
Max (avg, monthly) 16.72%
Std. Dev. (cross-section) 2.26%
Std. Dev. (time-series of monthly mean) 1.29%

Table 2: Repo Data Summary Statistics. Summary statistics of repo data and Treasury collateral use. Data from monthly
money market mutual fund filings. Sample Period from February 2011 to October 2018. Repo transaction rows include all repos,
not just repos with Treasury collateral and haircuts are winsorized at the 1 and 99% level to reduce the influence of outliers.
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Iliquidity Age Maturity Remaining Duration Borrower CDS Spread
CRit 0.12∗∗∗ 0.02∗∗∗ 0.13∗∗∗ 0.15∗∗∗ −0.13∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
N 26,784 26,784 26,784 26,784 26,252

Table 3: Collateral Ratio Correlations. Table presents the correlation of CUSIP-month collateral ratio on the CUSIP’s
observables: illiquidity, age, maturity remaining, duration, and value-weighted borrower CDS spread. Illiquidity is measured as
the bid-ask spread as a percent of the average of the bid and ask price; age is the age of the CUSIP in months relative to its
dated date; maturity remaining and duration are in months; borrower CDS spread is the CUSIP-specific CDS spread of banks
using that CUSIP as collateral weighted by the amount of collateral pledged by the dealer. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Mean StDev Mean/StDev
Single-Sorts Collateral Ratio 0.30 2.52 0.12

Liquidity 1.41 6.29 0.22

Double-Sorts Collateral Ratio by Liquidity 0.22 1.66 0.13
Liquidity by Collateral Ratio 1.38 6.18 0.22

Table 4: Collateral Premium. Collateral ratio defined as Collateral Ratioi,t = (Market Value of Treasury CUSIP i used as
Repo Collateral)/(Market Value of Treasury CUSIP i)t, and liquidity is the average of daily bid-ask spreads for each CUSIP in
each month. Both measures are lagged by one month. Single-sort premiums are the high-tercile minus low-tercile premiums.
Double-sort premiums are independent sorts based on terciles. Statistics are annualized from daily observations. Sample is 2011
to 2018.
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Average Return Standard Deviation
Illiqudity Illiqudity

Collateral Ratio Low Mid High High−Low Low Mid High
Low 1.04 1.47 3.37 2.34 Low 1.09 2.05 6.59
Mid 1.31 1.91 2.62 1.31 Mid 1.66 2.81 7.26
High 1.57 2.37 2.61 1.05 High 2.12 3.62 7.41

High−Low 0.53 0.90 −0.76

Table 5: Collateral Premium: Double-Sorted with Liquidity. Collateral ratio defined as Collateral Ratioi = (Market
Value of Treasury CUSIP i used as Repo Collateral)/(Market Value of Treasury CUSIP i), and liquidity is the average of
daily bid-ask spreads for each CUSIP in each month. Both measures lagged by one month and sorts are independent. The
collateral premium is the average of the High−Low row. Returns and standard deviations are percent and annualized from daily
observations. Sample is 2011 to 2018.
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Average Treatment Effect (1) (2) (3)
Collateral Premium 15.35∗∗∗ 13.50∗∗∗ 16.41∗∗∗

(3.11) (3.21) (3.62)
Observations 26,141 26,141 26,141
R2 Mahalanobis Euclidean Inverse Variance
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Collateral Premium Estimated with Nearest-Neighbor Match. Table shows the results of nearest-neighbor
matching across Treasuries sorted into one of two buckets: high- and low-CR. I then match Treasuries to their nearest neighbor
using duration, liquidity and maturity remaining each month. Each column shows the annualized average difference in monthly
returns between Treasuries in the high- and low-CR halves using different distance metrics. T-statistics are reported in parentheses
using robust standard errors.
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Double Sort with Liquidity Single Sort
(1) (2) (3) (4) (5) (6)

Bank Leverage Constraints
ArbFact 3.90∗ 3.99∗ 4.02∗∗ 5.32 5.19 5.32

(1.74) (1.69) (1.97) (1.30) (1.27) (1.43)
Controls

∆CDSt 64.48∗∗∗ 112.58∗∗∗
(4.69) (5.07)

∆U.S. Gov’t Liquidity Indext −0.07 −0.08
(−1.44) (−1.12)

Observations 1,940 1,940 1,939 1,940 1,940 1,939
R2 0.00 0.04 0.06 0.00 0.04 0.07
Year/Month Fixed-Effects No Yes Yes No Yes Yes
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Covariance of Bank Leverage Constraints and Collateral Premium. Collateral Premiumt = α+β1ArbFact +
β′2Xt + εt where Xt is a vector of controls. Regression run at the daily level. Dependent variable is collateral premium return
in basis points; the first three columns are the collateral premium double-sorted with liquidity. Independent variables are
ArbFact which measures bank constraints by calculating the returns to bank-intermediated arbitrages; see the text for additional
discussion of its construction. ∆CDSt is the change in the median CDS spread for the financial sector. The U.S. Government
Liquidity index is the Bloomberg U.S. Government Securities Liquidity index, which measures liquidity of Treasury notes and
bonds. T-statistics are reported in parentheses using heterosketastic and autocorrelation consistent standard errors using the
Newey and West (1994) automatic lag selection procedure.
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Bank Constraint State Portfolio Months Mean Std. Error T-test p-value
Unconstrained Low Collateral Ratio 47 1.03 0.04

High Collateral Ratio 47 1.26 0.05
High−Low Collateral Ratio 47 0.23 0.03

Constrained Low Collateral Ratio 46 0.81 0.03
High Collateral Ratio 46 1.13 0.03
High−Low Collateral Ratio 46 0.32 0.03

High−Low Collateral Ratio: Constrained vs. Unconstrained 46 0.09 0.04 2.29 0.02

Table 8: Collateral Ratio-Sorted Portfolio Yields by Bank Leverage Constraint State. Table presents the value-
weighted yield-to-maturity less the 1-month T-bill for high- and low-CR portfolios across bank leverage constraints. Bank
leverage constraint is calculated by the median ArbConstraint. T-test and p-value correspond to two-sided tests: H0 : (yHigh-CR−
yLow-CR)Constrained−(yHigh-CR−yLow-CR)Unconstrained = 0 vs. Ha : (yHigh-CR−yLow-CR)Constrained−(yHigh-CR−yLow-CR)Unconstrained 6= 0.
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High Collateral Ratio Low Collateral Ratio
(1) (2) (3) (4)

Diff-in-Diff
I(Post) 121.65∗∗∗ 40.39∗∗∗ 54.82∗∗∗ 73.76∗∗∗

(6.56) (3.29) (3.47) (6.57)
I(Treated) 24.56∗∗ 22.06∗∗ 3.58 3.38

(2.31) (2.15) (0.49) (0.51)
I(Post)×I(Treated) −58.05∗∗∗ −57.24∗∗∗ −3.74 −5.01

(−2.71) (−2.62) (−0.24) (−0.35)
Bond Characteristics
Duration 2.62∗∗∗ 2.67∗∗∗ 2.52∗∗∗ 2.44∗∗∗

(5.58) (6.57) (5.81) (6.75)
Liquidity −34.43∗∗∗ −22.12∗∗∗ −13.00∗∗∗ −1.29

(−4.51) (−2.84) (−3.78) (−0.36)
On-the-run 1.70 −15.88 −71.57∗∗∗ −10.96

(0.08) (−1.08) (−3.59) (−0.68)
Maturity Remaining −0.61∗∗ −0.60∗∗ −0.63∗ −0.61∗

(−2.17) (−2.52) (−1.78) (−1.93)
Observations 1,060 1,060 1,147 1,147
R2 0.26 0.50 0.25 0.50
Month Fixed-Effects No Yes No Yes
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Collateral Returns around July 2011 Euro Sovereign Debt Crisis Event.
ri,t = α+γ1I(Post) +γ2I(Treated) +γ3I(Post)× I(Treated) +β′Xt+εi,t where t is month and
i is a Treasury CUSIP and Xt is a vector of controls. Regression is weighted by the CUSIP
market-value. ri,t is in basis points. I define I(Post) = 1 if the date is after July 11, 2011 and
0 otherwise. I defined the CUSIP as treated, I(Treated) = 1, if the specific Treasury CUSIP
is intensively used by collateral by European banks. Specifically, I look at all Treasury bonds
used as collateral one quarter before the July event—in April 2011—and sort bonds into two
halves based on the share of that CUSIP used as collateral by European banks compared
to that CUSIP’s total use as collateral. I set I(Treated) = 1 for bonds above the median
European share in April 2011. I examine the five months before and after the July 11 event.
I limit the test to CUSIPs used as collateral in April 2011. I define a CUSIP as on-the-run if
it spends more than half the month as the on-the-run security. Standard errors clustered by
CUSIP. T-statistics using robust standard errors are reported in parentheses.
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Actual Event Predicted Event
(1) (2) (3) (4)

I(Post) −1.76∗∗∗ −0.53∗∗ 0.26 −0.02
(−3.91) (−2.06) (0.34) (−0.04)

Observations 2,910 8,720 820 2,458
R2 0.01 0.00 0.00 0.00
Year Fixed-Effects Yes Yes Yes Yes
Weighted Yes Yes Yes Yes
Window 3 Days 10 Days 3 Days 10 Days
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: Average Abnormal Return after Collateral Use Changes. ri,t = I(Post)i,t + εi,t where i is a Treasury CUSIP,
ri,t is the abnormal return of a Treasury CUSIP, and I(Post)i,t dummy equal to 1 after the CUSIP moves from the low tercile of
collateral ratio to high tercile (for the actual event columns) and when the CUSIP is predicted to move from the low tercile
to the high (for the predicted event columns). Observations are day by CUSIP. Treasury CUSIP abnormal returns estimated
using daily data and the 10-year Treasury return index from CRSP. T-statistics using robust standard errors are reported in
parentheses.
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Actual Placebo
(1) (2) (3) (4) (5) (6)

Weighted Bank Abnormal Returni,t 24.70∗ 62.37∗∗∗ 62.52∗∗∗
(1.91) (3.51) (3.10)

Placebo-Bank Abnormal Returni,t −6.80 −16.32 −0.62
(−0.87) (−1.11) (−0.04)

Observations 1,995 1,995 1,995 1,796 1,796 1,796
R2 0.00 0.07 0.08 0.00 0.07 0.08
Year Fixed-Effects No Yes Yes No Yes Yes
Weighted No No Yes No No Yes
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: Collateral and Bank Abnormal Returns after Stress Tests. ri,t = α+βWeighted Bank Abnormal Returni,t+
εi,t where t is month, i is a Treasury CUSIP, ri,t is the abnormal return of a Treasury CUSIP in basis points, and
Weighted Bank Abnormal Returni,t is the value-weighted abnormal return of banks using CUSIP i as collateral. Observa-
tions are day by CUSIP, and includes only the first trading day after stress test announcements. Value-weights are calculated by
aggregating across bank stock abnormal return with weights given by the bank’s use of that CUSIP as collateral as a share of all
the banks’ use of that CUSIP as collateral in a given month. I lag the value-weights by one month to reflect the data lag on
collateral use. Bank abnormal returns calculated by year and bank using daily excess returns over the previous three months and
the Fama–French excess market return. Treasury CUSIP abnormal returns estimated using daily data and the 10-year Treasury
return index from CRSP. Placebo-Bank Abnormal Returni,t is the equal-weighted return of all banks not using that CUSIP as
collateral. See section A.5 for additional details. T-statistics using robust standard errors are reported in parentheses.
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A Internet Appendix

A.1 Model Details

The proposition in the model section uses the geometric risk premium of Treasuries given in
Equation 5, which shows:

Et[rθub,t+1 − rf,t+1] ≈ γσc,θub − σh,θub − ω′θub
(M t)

assuming µh = 0 and γσcσh = 0, where log (1 + Ω′(M t+1)πθub) = µh + σhεt+1, rθub,t+1 =
log(1 + Rθub,t+1), and −ω′θub

(M t) = log(1 − Ω′(M t)πθub). Following Campbell (2017), σc,θub

is the conditional covariance of log unboxed Treasury returns and consumption growth,
which under the homoskedastic assumption is equivalent to the unconditional covariance
of innovations to Covt(ct+1 − Etct+1, rθub,t+1 − Etrθub,t+1). I define σh,θub analogously. The
risk-free rate is rf,t+1 = − log(β) + γµc − 1/2γ2σ2

c . An analogous result holds for the boxed
Treasury.

Expected returns for unboxed Treasuries depend on three components: the Treasury
bond’s consumption covariance, its haircut covariance, and its money premium. Increasing
haircuts ht increases the money premium ω′(M ), assuming M > 1, and decreases expected
Treasury returns.

The first term, γσc,θub , is the unboxed Treasury consumption covariance term. It is
standard in consumption-based asset pricing: if the covariance between an asset’s returns
and consumption growth is positive then the asset is risky because it has lower returns when
marginal utility is high. Investors require a risk premium to compensate them for holding an
asset with bad payoffs in bad states. Moreover, the risk premium is increasing in agents’ risk
aversion γ. Treasuries are safe assets with comparatively high returns during flight-to-safety
states when marginal utility is high. A Treasury’s consumption covariance is low and the
bond carries a smaller risk premium than risky assets, like equities.

The second term, σh,θub , is the covariance of innovations to the safe-asset supply with the
Treasury’s returns. Suppose ht+t > ht, then banks are hit by a rising haircut, pushing down
RB, which in turn lowers M t+1. Money-like assets with lower returns when M t+1 is lower
(e.g., if σh,θub < 0) are risky.

The third component, ω′θub
(M t), reflects the Treasury’s money-like, safe-asset value. It

is decreasing in M t. Suppose in equilibrium there are few safe assets in the economy, then
ω′θub

(M t) approaches infinity, and agents push up the price of Treasuries so much that expected
returns turn negative. The money premium disappears when there are infinite safe assets:
limM→∞ ω

′
θub

(M t) = 0.
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The effect of increasing haircuts on the money premium is

∂ω′θub
(M t)

∂ht
= πθub [(1− ht)A′(ht)− A(ht)]

[
1

M t

− 1
M t − πθub

]
> 0 (A1)

The model does not pin down the sign of A′(ht) because the model implicitly defines the
bank’s equilibrium portfolio of λK, θBb , and θBub (which combine to A). I empirically estimate
the sign and find it is negative, A′(ht) < 0, consistent with Adrian et al. (2014)’s finding that
broker-dealer leverage is correlated with asset growth. I give details for the empirical exercise
in the parameter estimation discussion below. When M t > 1 then 1/Mt − 1/(Mt−πθub ) < 0 since
1− ht > 0 and A(ht) > 0. Combined, the partial is positive.

The partial clarifies two competing channels in the production of private safe assets after
haircuts increase. If the economy is at equilibrium and haircuts increase, B falls and M is
too low. If A′(ht) > 0, banks respond to the heightened safe-asset demand by expanding
their balance sheet, despite the higher haircut, to earn the larger convenience yield by issuing
money-like liabilities. In this case, agents do not need to bid up the price of Treasuries
because B satiates their safe-asset demand. But if A′(ht) < 0 then banks shrink their balance
sheets as haircuts increase, B and M fall, and households bid up Treasuries because there is
no alternative to satiate their safe-asset demand. Empirically, I find that banks shrink their
balance sheets when haircuts increase so the latter channel dominates.

Proposition. The convenience yield—the difference in expected returns for the Lucas trees
and safe assets—is increasing in bank leverage constraints, ht, and attenuated by bank leverage
risk when M t > 1, A′(ht) < 0, and σh,θb ≤ 0.

Proof. The difference in the expected returns for K and the boxed Treasury θb is

Et[rK,t+1 − rθb,t+1] ≈ γ(σc,K − σc,θb) + σh,θb + ω′(M t) (A2)

which is increasing in ht if M t > 1 and A′(ht) < 0. Intuitively, as ht increases, banks become
more constrained and cannot issue more safe assets. When A′(ht) < 0 banks shrink their
balance sheets as haircuts increase, B and M fall, and households bid up Treasuries because
there is no alternative to satiate their safe-asset demand. Agents bid up the price of Treasuries
in the first period, which pushes down expected returns for Treasuries and creates a wedge
between rK and rθb .

The convenience yield estimates ω′(M t). The convenience yield is attenuated if it does not
control for haircut covariance σh,θb because σh,θb ≤ 0, which I empirically verify in Table A1.
A similar result holds if I change the definition of convenience yield to use the unboxed
Treasury yield, but the attenuation bias is smaller because σh,θb < σh,θub < 0.
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Parameter Estimation Table A1 shows estimated covariances using annualized monthly
data. To estimate the covariances, I use the Fama–French market factor and personal
consumption expenditures (PCE). I convert the series to real terms using the PCE inflation
index, the preferred measure of inflation of the Federal Reserve’s FOMC. The result are
annual percent changes in real terms. The data cover the period from 1959 to 2019.

I estimate covariances for boxed and unboxed Treasuries by sorting Treasury CUSIPs on
their collateral ratio, the percent of the Treasury CUSIP’s market value used as tri-party repo
collateral with money market funds. The boxed Treasury portfolio consists of Treasuries with
collateral ratios in the highest tercile. The unboxed Treasury portfolio consists of Treasuries
in the lowest collateral ratio tercile. Both Treasury portfolios control for liquidity and are
the highest or lowest tercile of collateral ratio after double sorting with liquidity. Treasury
portfolios are available from 2011 to 2018.

To measure haircut covariances, I proxy innovations to ht with innovations to bank-
intermediated arbitrage returns, ht = −1 × ArbFac. I describe ArbFac’s construction in
Section 4.2. The covariance of Treasury returns and consumption growth, after rounding to
two decimal points, are equal across the unboxed and boxed Treasuries (0.00 and 0.00), but
the covariance of their returns and bank leverage constraints are different: −0.44 and −0.57,
respectively. When banks grow more constrained (ht ↑), boxed Treasuries have lower returns
than unboxed Treasuries—this is why the collateral premium is positive.

I estimate A′(ht) in Table A2, which shows correlations of the change in banks’ collateral
holdings, A = λK + θBb + θBub, as haircut ht increases. I proxy for ht using ArbFac, where
ArbFac > 0 corresponds to bank leverage constraints falling. All four columns use quarterly
balance sheet data from the Federal Reserve’s Financial Accounts of the U.S. The first two
columns calculate A using Table L.108, “Domestic Financial Sector” where A is the sum of
loans and Treasury securities. The last two columns calculate A using Table L.110, “Private
Depository Institutions.” The point estimates in each regression show a positive relationship
between shrinking haircuts and banks’ asset growth. Since banks cannot easily adjust their
loan portfolios quickly, the effect is larger and more significant at longer lags. The results
support my assumption that A′(ht) < 0 and are consistent with Adrian et al. (2014)’s finding
that broker-dealer leverage is correlated with asset growth.

Comparative Statics I plot the key comparative statics and features of the model in
Figure A1 using the estimated parameters from Table A1. The top-left figure shows the
geometric risk premiums for both types of Treasuries over varying equilibrium values of M t

(equation 5). As M t goes to 0, the money premium grows, pulling down expected returns;
as M t increases, expected returns grow at a slowing pace: households do not bid up the
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Treasury’s price to purchase a safe asset because there are more safe assets in the economy.
The bottom-left panel shows the money premium, ω′(M t), which is large when M t is smaller
and falls as it increases.

The top-right panel shows the collateral premium, the difference between boxed and
unboxed Treasuries from equation 6. The collateral premium is positive for all values of M t

and increases as M t falls because the two bonds have different money weights. The bottom-
right panel is the convenience yield of equation A2 estimated using the boxed Treasury’s
covariances, where the convenience yield with the bank leverage risk adjustment excludes the
σh,θb term. As M t decreases, the convenience yield increases because safe assets are scarcer
when the bank cannot produce as many B per unit of collateral, so agents are willing to pay
more for a safe asset compared to the Lucas tree.

A.2 Collateral Optimization

In the tri-party repo market, lenders cannot control which specific collateral they receive. For
both equity and fixed-income collateral, lenders can specify more granular cuts or make manual
adjustments. The buckets include Treasuries, agency debentures, international agencies, trust
receipts, cash, GNMA, agency mortgage backs, agency REIMCs/CMOs, government trust
certificates, SBA, sovereign debt, agency credit risk securities, municipal bonds, private-label
CMOs, ABS, corporate bonds, and money market instruments. Each bucket provides more
granularity. Within Treasuries, there are five types: bills, bonds, notes, strips, and synthetic
Treasuries. Within agency REMICs/CMOs, lenders can choose among 15 types. The types
are residuals, inverse IO floaters, IOettes, interest-only, principle-only, inverse floaters, super
floaters, companion floaters, sequential and other floaters, PAC and other scheduled floaters,
Z bonds, companion bonds, sequential bonds, TAC bonds, PAC and other scheduled bonds.

Cash lenders can choose the acceptable credit rating for municipal bonds, private-label
CMOs, ABS, corporate bonds, and money market instruments. The lender also sets an
appropriate margin for each collateral-type, and they can exclude securities in default and
counterparty securities.

Cash lenders can choose whether they will accept common stock (by exchange), preferred,
ETFs, UITs, ADRs, warrants or rights, mutual funds, equity indices, convertible bonds, or
preferred stocks.

The general collateral optimization process takes several steps. Dealers combine their
inventory held at BNYM and elsewhere along with their exposures. They give BNYM a
collateral eligibility schedule that shows what collateral is acceptable for each transaction.
The inputs create position eligibility data, showing which collateral is eligible for each trade,
considering margins and concentration limits. The clearing bank allocates collateral by
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combining position eligibility with the dealer’s collateral rank preference in the collateral
prioritization schedule. Finally, BNYM physically moves the collateral to the appropriate
box. If dealers choose to include positions held away from BNYM in the optimization, they
will also need to use SWIFT, or something similar, to move positions.

A.3 Borrower CDS Details

I measure the riskiness of the cash borrowers (the repo issuer) using a Treasury CUSIP by
manually matching to Markit CDS entities to calculate a CUSIP-specific CDS spread that
value weights across all the borrowers using a single CUSIP as collateral. I calculate the
CUSIP-specific CDS spread of banks using that CUSIP as collateral, and I weigh by the
amount of collateral pledged by the bank. I include 5-year CDS on senior secured debt and
average the CDS spreads across all currencies that quotes are available for on a given day for
a given entity. I include contracts with different document clauses based on the convention
by geography: MR for US and Australian firms; CR for Asian firms; and MM for European
firms. I use the 14 vintages of the contracts (CR14, MR14, MM14) for dates on September
22, 2014 and after.

Table A3 provide the matches between manually-identified issuers in the repo collateral
data and the best Markit CDS entity match. In general, I matched to the entity at the
consolidated level when possible (e.g., Merrill Lynch is matched to Bank of America’s Markit
redcode), otherwise matching with the broker-dealer (e.g., Natwest is matched to RBS), or
the related entity with the most CDS data. Several entities have no match in the CDS data.

A.4 Basis Details

There are three types of basis trades included: covered interest parity, cash Treasuries vs.
futures, and cash Treasuries vs. swaps. Long-short positions described for a negative basis.
See Boyarchenko et al. (2020) for additional details.

1. Covered Interest Parity: The trade is long a bond paying the foreign interest rate,
financed via repo at the overnight repo rate, with the haircut financed at 3-month OIS,
shorts a forward exchange swap and finances the initial margin at 3-month OIS, and
shorts a bond paying domestic U.S. interest rates, financing with overnight reverse
repo. I measure foreign and domestic interest rates using with OIS rates or inter-bank
offered rates. I assume the repo haircuts are 2.8 percent for both the domestic and
the foreign bond, repo rates are overnight GCF repo rate, and the initial margin is 6
percent. No OIS rates are unavailable for NOK. Additionally, before December 2017
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CHF OIS fixings were based on TOIS and then switched to SARON fixings; I splice
these two different OIS rates for CHF together to create a single timeseries.

2. Cash Treasury vs. Futures: The trade is long the duration-adjusted Treasury future,
and the futures margin is financed via 3-month OIS. The trade shorts the cheapest-to-
deliver Treasury identified by Bloomberg, financed via repo, with the haircut financed
at 3-month OIS. I assume the repo haircut is 2.8 percent, the initial future margin
comes from the CME and varies between 0.1 percent and 6.5 percent, and the delivery
date is the last day for the futures contract. Repo rate is the overnight GCF repo rate.

3. Cash Treasury vs. Swap: The trade is long a Treasury, financed with repo and the
haircut financed at 3-month OIS. The trade shorts an interest rate swap which pays a
fixed rate, and the swap margin is financed at 3-month OIS. I assume the repo haircut
is 2.8 percent and the initial swap margin is 3.9 percent. Repo rate is the overnight
GCF repo rate.

To minimize idiosyncrasies in any one market, I estimate the daily bank leverage constraints
by aggregating the basis trades to a single measure. I calculate the z-score for each basis
trade using that trade’s moments from its first full year of data. I take the absolute value
of the z-score to capture the intuition that the trades are often reversible (i.e., if the trade
expected return is negative, you can often flip the long and short legs). Then I calculate
the equal-weighted average across the individual basis trades available on that day for each
category of arbitrages (e.g., 2y Treasury cash/future, 5y Treasury cash/futures, etc.). Finally,
I average across the category-level averages (e.g., Treasury cash/future, Treasury cash/swap,
CIP) to create ArbConstraint.

I estimate daily innovations to bank leverage constraints, ArbFac, following the method
of He et al. (2017): first, I estimate innovations ut to ArbConstraintt using an AR(1)

ArbConstraintt = ρ0 + ρArbConstraintt−1 + ut

Then I convert it to a growth rate by dividing with the lagged level and multiplying by −1
so the interpretation is consistent with most factors: a positive number reflects good news as
the banking system becomes less leverage constrained.

ArbFact = −1× ut
ArbConstraintt−1

Figure A2 plots the level of the average arbitrage constraint ArbConstraint and the innovations
as measured by the factor ArbFac.
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A.5 Stress Test Abnormal Return Details

I create the sample of bank stock returns and Treasury collateral returns by merging two data
sets. First, I manually identify the bank borrower in each repo in the Form N-MFP/MFP2
data. There are roughly 70 institutions in the data, many of which are neither banks nor
included in the Federal Reserve’s stress tests.

Second, I get stock prices for firms in the intersection of the banks with repo data and
banks that were included in the stress tests, for a total of 22 banks. I calculate returns for
each of the banks included in the stress tests between 2011 and 2019 using stock returns for
the parent company’s stock traded in its home country; I use Bloomberg to convert end-of-day
prices to dollars when the stock’s price is not quoted in dollars. The sample of banks is (with
associated Bloomberg tickers): Bank of America Corporation (BAC US Equity), Barclays US
LLC (BARC LN Equity), BMO Financial Corp. (BMO CN Equity), BNP Paribas USA, Inc.
(BNP FP Equity), Citigroup Inc. (C US Equity), Credit Suisse Holdings (USA), Inc. (CSGN
SW Equity), DB USA Corporation (DBK GR Equity), HSBC North America Holdings Inc.
(HSBA LN Equity), JPMorgan Chase & Co. (JPM US Equity), Morgan Stanley (MS US
Equity), MUFG Americas Holdings Corporation (8306 JT Equity), RBC US Group Holdings
LLC (RY CN Equity), RBS Citizens Financial Group, Inc. (NWG LN Equity), State Street
Corporation (STT US Equity), SunTrust Banks, Inc. (STI US Equity), TD Group US
Holdings LLC (TD US Equity), The Bank of New York Mellon Corporation (BK US Equity),
The Goldman Sachs Group, Inc. (GS US Equity), The PNC Financial Services Group, Inc.
(PNC US Equity), U.S. Bancorp (USB US Equity), UBS Americas Holding LLC (UBSG
SW Equity), Wells Fargo & Company (WFC US Equity). I match collateral data from the
Form-NFP/2 attributed to Merrill Lynch to Bank of America, and from RBS to NatWest.

Deutsche Bank changed its legal name in the stress test from “Deutsche Bank Trust
Corporation” to “DB USA Corporation.” Before 2015, RBS Citizens Financial Group was a
subsidiary of NatWest Group through RBS, and it was spun off into the separate Citizens
Financial Group in 2015. Citizens Financial Group does not appear in the Form-NFP/2 repo
data.

I use daily returns over the previous three months to estimate abnormal returns, excluding
the day of the stress test result announcement, and I require all banks to have a return on a
given day otherwise that date is excluded from the estimation period.

Table A4 gives the dates that the Federal Reserve announced the results of the CCAR
stress tests. The announcement occurred after markets closed at 4:30pm for the tests between
2012 and 2019. No firm-specific results were released in the 2011 CCAR, and the results were
released at 11:00am.
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A.6 Appendix Figures
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Figure A1: Comparative Statics. The top-left figure shows the geometric risk premiums for both types of Treasuries over
differing equilibrium values of money-like safe assets M t as given in equation 5. The bottom-left panel shows the money premium,
the last term in equation 5. The top-right panel shows the collateral premium, which is the difference between the two Treasuries’
expected returns as given in equation 6. The bottom-right panel is the convenience yield of equation A2 estimated using the
boxed Treasury’s covariances where the convenience yield with the leverage risk adjustment excludes the σh,θb term. I use
covariances estimated in Table A1. Parameter values are πθb = 0.9, πθub = 1, and γ = 10.
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Figure A2: ArbConstraint and ArbFac. Left panel is ArbConstraint, which is the average z-score of the basis trades
available on that date. Right panel shows ArbFac, estimated as the AR(1) innovations from ArbConstraint multiplied by −1 so
the interpretation is the same as normal factors: a positive number reflects banks growing less leverage constrained.
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A.7 Appendix Tables

Monthly Data (2011–2018) Variable Empirical Proxy Mean (%) SD (%) Cov(·,∆c)× 100 Cov(·, h)× 100
Real economy rK − rf Fama–French Market 3.37 15.17 0.03 −0.85
Boxed Treasury rθb − rf Hi Collateral Ratio Tercile 0.32 3.72 0.00 −0.57
Unboxed Treasury rθub − rf Lo Collateral Ratio Tercile 0.13 2.84 0.00 −0.44
Consumption ∆ct+1 PCE 3.26 1.81 0.03 −0.50

Table A1: Empirical Covariances. Table presents summary statistics of real excess returns for the market and Treasury
portfolios, as well as covariances with real consumption growth and innovations to bank leverage constraints. Each series is in
real terms using the PCE inflation index. The risk-free rate is the 1-month T-bill rate. Summary statistics are calculated from
monthly return series but reported as annualized numbers. The boxed Treasury portfolios is a portfolio long Treasuries with
collateral ratios—the share of the total Treasury CUSIP market value used as tri-party repo collateral with a money market
fund—in the top tercile, lagged by one month and controlling for liquidity. Similarly, the unboxed Treasury portfolio is long
Treasuries that are in the bottom tercile of collateral use, and controls for liquidity. Sample for Treasuries runs from 2011 to
2018, and sample for consumption and market return are 1959 to 2020.
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Domestic Financial Sector Depository Institutions
∆ log(A) ∆ log(A) ∆ log(A) ∆ log(A)

ArbFact−1 0.19∗∗∗ −0.06 0.13 −0.01
(3.24) (−0.66) (1.47) (−0.16)

ArbFact−2 0.42∗∗∗ 0.08
(3.34) (0.49)

ArbFact−3 0.04 0.14
(0.23) (1.09)

ArbFact−4 0.17 0.25∗
(1.23) (1.95)

Observations 123 120 124 121
R2 0.02 0.16 0.01 0.06
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A2: Empirical Estimate of ∂A(ht)/∂ht. Table presents empirical results for the sign of the change in banks’ collateral
holdings, A, as haircut h increase, where A = λK + θB, with bank loans λK and bank-owned Treasuries θB. Innovations to ht
are proxied by ArbFac, which is the innovations to bank-intermediated arbitrage returns. I discuss ArbFac’s construction in
Section 4.2; ArbFac > 0 when banks are less constrained. All four columns use quarterly balance sheet data from the Federal
Reserve Financial Accounts of the United States. The first two columns calculate A using Table L.108, “Domestic Financial
Sector” where A is the sum of loans and Treasury securities. The last two columns calculate A using Table L.110, “Private
Depository Institutions.” T-statistics are reported in parentheses using heterosketastic and autocorrelation consistent standard
errors using the Newey and West (1994) automatic lag selection procedure.
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Name Matched Markit Entity Name Matched Markit Entity
ABN AMRO ABN AMRO Bk NV HSBC HSBC Hldgs plc
AMERICAN HONDA FINANCE Amern Honda Fin Corp ING ING Groep NV
AMHERST PIERPONT n.a. JP MORGAN JPMorgan Chase & Co
ANNALY n.a. LEHMAN n.a.
ANZ Aust & New Zld Bkg Gp Ltd LLOYDS LLOYDS BK PLC
ASL n.a. MERRILL LYNCH Bk of America Corp
BANK OF AMERICA Bk of America Corp METLIFE MetLife Inc
BANK OF MONTREAL Bk Montreal MITSUBISHI Bk of Tokyo Mitsubishi UFJ Ltd
BANK OF NEW YORK MELLON Bk of NY Mellon Corp MIZUHO Mizuho Bk Ltd
BANK OF NOVA SCOTIA Bk Nova Scotia MORGAN STANLEY Morgan Stanley
BARCLAYS Barclays Bk plc NATIONAL AUSTRALIA BANK Natl Aust Bk Ltd
BNP PARIBAS BNP Paribas NATIONAL BANK OF CANADA n.a.
BPCE n.a. NATIXIS Natixis
CALYON Societe Generale NATWEST Royal Bk Scotland Gp PLC
CANTOR FITZGERALD n.a. NESBITT BURNS Bk Montreal
CIBC Cdn Imperial Bk Comm NOMURA Nomura Hldgs Inc
CITI Citigroup Inc NORINCHUKIN BANK Norinchukin Bk
COMMERZBANK Commerzbank AG NORTHWESTERN MUTUAL n.a.
CREDIT AGRICOLE Cr Agricole SA PNC PNC Finl SERVICES GROUP INC
CREDIT SUISSE Credit Suisse Gp AG PRUDENTIAL Prudential Finl Inc
CURVATURE SECURITIES n.a. RBC Royal Bk Cda
DAIWA Daiwa Secs Gp Inc RBS Royal Bk Scotland Gp PLC
DEUTSCHE BANK Deutsche Bk AG SBCW MORTGAGE n.a.
DNB ASA DNB Bk ASA SCOTIA Bk Nova Scotia
FCSTONE n.a. SOCIETE GENERALE Societe Generale
FEDERAL RESERVE n.a. SOUTH STREET n.a.
FFCB n.a. STANDARD CHARTERED STANDARD CHARTERED PLC
FHLMC n.a. STATE STREET St Str Corp
FIRST UNION CORP Wells Fargo & Co SUMITOMO MITSUI Sumitomo Mitsui Bkg Corp
FIXED INCOME CLEARING CORP n.a. SUNTRUST SunTrust Bks Inc
GOLDMAN SACHS Goldman Sachs Gp Inc TORONTO DOMINION Toronto Dominion Bk
GREENWICH n.a. UBS UBS AG
GUGGENHEIM n.a. UMB n.a.
GX CLARKE n.a. US BANK U S Bancorp
HARVARD n.a. WELLS FARGO Wells Fargo & Co

Table A3: CDS Matches. Table provides the links used to calculate an repo issuer (cash borrower) CDS spread by matching
consolidated entities in the repo collateral data to an entity in the Markit CDS data set. n.a. denotes no match is available.

60



Year Date

2011 Friday, March 18, 2011
2012 Tuesday, March 13, 2012
2013 Thursday, March 14, 2013
2014 Wednesday, March 26, 2014
2015 Wednesday, March 11, 2015
2016 Wednesday, June 29, 2016
2017 Wednesday, June 28, 2017
2018 Thursday, June 28, 2018
2019 Thursday, June 27, 2019

Table A4: CCAR Stress Test Announcement Dates.
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